
Deep Learning for Data Science
DS 542

Lecture 16
Transformer Details

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Midterm Comments

Re: questions,

● Mostly looked for you saying something reasonable, and that it matched your
code and the data.

Re: learning rate schedules,

● A few of you had the learning rate dropping by 0.1 every 10-20 epochs.
● This basically stops learning within 50 epochs.
● Should be obvious something is wrong from the loss and accuracy charts.

Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers
● Transformer Scaling

What’s a Token?

A small chunk of text that we use to aid language modeling.

● Represents one or more bytes

● Input texts are greedily divided into tokens.
○ Longest prefix matching a token.

● Token set also constructed greedily.
○ Start with 256 possible bytes.

○ Then greedily pick the most common pairs of adjacent tokens.

NLP Preprocessing Pipeline

Tokenizer
Learned

Embeddings
Transformer

Preprocessing: Tokenization and
Embedding

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>

Example Tokens

Why Tokens?

Instead of…
● Bits - not enough semantics* and missing intrabyte positioning
● Bytes - not enough semantics* for Unicode
● Characters - too many of them if we try to support all languages
● Words - even more words than characters

Remember:
● One-hot/Softmax tactic means we will have at least one output per

possible output value, and many more parameters in practice.

Covers ASCII

Covers remainder of almost all Latin-script alphabets

Unicode Standard and UTF-8

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Basic Multilingual Plane including Chinese, Japanese and Korean characters

Emoji, historic scripts, math symbols

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8

Tokenizer

Tokenizer chooses input “units”, e.g. words, sub-words, characters via
tokenizer training

In tokenizer training, commonly occurring substrings are greedily merged
based on their frequency, starting with character pairs

Encode Decode
character (e.g.

Unicode)
strings

token
IDs

character (e.g.
Unicode)

strings

Tokenization Issues

“A lot of the issues that may look like issues with the neural network architecture actually trace back to
tokenization. Here are just a few examples” – Andrej Karpathy

● Why can't LLM spell words? Tokenization.

● Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.

● Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

● Why is LLM bad at simple arithmetic? Tokenization.

● Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.

● Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.

● What is this weird warning I get about a "trailing whitespace"? Tokenization.

● Why did the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.

● Why should I prefer to use YAML over JSON with LLMs? Tokenization.

● Why is LLM not actually end-to-end language modeling? Tokenization.

● What is the real root of suffering? Tokenization.

https://github.com/karpathy/minbpe/blob/master/lecture.md

https://github.com/karpathy/minbpe/blob/master/lecture.md

SolidGoldMagikarp???

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

SolidGoldMagikarp???

SolidGoldMagikarp???

SolidGoldMagikarp

● Supposedly from a Redditor’s username

● But doesn’t come up much in most training data sets, so weird things
happen if you add it to an input.

○ Supposedly fixed now by most LLM API providers…

Intuition about Tokenization

● Small chunks of text are messy to handle.
○ Picking one bit at a time is like being asked “upper case or lower case”

● Longer chunks imply more semantics
○ Easier to model?

○ But maybe a bias towards some languages?

● But too long chunks won’t have coverage in training data

● More tokens means more model outputs
○ So both computational costs and coverage issues if too many

Tokenizer
Two common tokenizers:

● Byte Pair Encoding (BPE) – Used by OpenAI GPT2, GPT4, etc.
○ The BPE algorithm is "byte-level" because it runs on UTF-8 encoded strings.
○ This algorithm was popularized for LLMs by the GPT-2 paper and the associated GPT-2 code

release from OpenAI. Sennrich et al. 2015 is cited as the original reference for the use of BPE
in NLP applications. Today, all modern LLMs (e.g. GPT, Llama, Mistral) use this algorithm to
train their tokenizers.*

● sentencepiece
○ (e.g. Llama, Mistral) use sentencepiece instead. Primary difference being that sentencepiece

runs BPE directly on Unicode code points instead of on UTF-8 encoded bytes.

* https://github.com/karpathy/minbpe/tree/master

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://github.com/openai/gpt-2
https://github.com/openai/gpt-2
https://arxiv.org/abs/1508.07909
https://github.com/google/sentencepiece
https://github.com/karpathy/minbpe/tree/master

BPE Pseudocode

Initialize vocabulary with individual characters in the
text and their frequencies
While desired vocabulary size not reached:
 Identify the most frequent pair of adjacent
 tokens/characters in the vocabulary
 Merge this pair to form a new token
 Update the vocabulary with this new token
 Recalculate frequencies of all tokens including
 the new token
Return the final vocabulary

Enforce a Token Split Pattern

● Do not allow tokens to merge across certain characters or patterns

● Common contraction endings: ‘ll, ‘ve, ‘re

● Match words with a leading space

● Match numeric sequences

● carriage returns, new lines

GPT4_SPLIT_PATTERN = r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}+|\p{N}{1,3}|
?[^\s\p{L}\p{N}]++[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+"""

GPT2_SPLIT_PATTERN = r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""

GPT4 Tokenizer

https://tiktokenizer.vercel.app/

cl100k_base is the GPT4
tokenizer

https://tiktokenizer.vercel.app/

GPT2 Tokenizer

https://tiktokenizer.vercel.app/

You can see some issues with the
GPT2 tokenizer with respect to
python code

https://tiktokenizer.vercel.app/

GPT4 Tokenizer

https://tiktokenizer.vercel.app/

Issues are improved with GPT4
tokenizer

https://tiktokenizer.vercel.app/

Byte Pair Encoding (BPE) Example

Byte Pair Encoding (BPE) Example

Byte Pair Encoding (BPE) Example

Byte Pair Encoding (BPE) Example

Byte Pair Encoding (BPE) Example

Generally # of tokens increases and
then starts decreasing after
continuing to merge tokens

self.embedding = nn.Embedding(vocab_size, embedding_dim)

Learned Embeddings

● After the tokenizer, you have an updated “vocabulary” indexed by token ID
● Next step is to translate the token into an embedding vector
● Translation is done via a linear layer which is typically learned with the rest

of the transformer model

● Special layer definition, likely to exploit sparsity of input

Tokenizer
Learned

Embeddings:
Linear Layer

Transformer

<Some text string>

Embeddings Output

”One hot encoding”

N

In this example, we are
assuming a token is simply a
complete word

Tokenization Matters

From the gpt-4o announcement,

“It matches GPT-4 Turbo performance on text in English and code, with
significant improvement on text in non-English languages, while also being
much faster and 50% cheaper in the API.”

Gains were from increasing the
number of tokens in the updated
tokenizer.

https://openai.com/index/hello-gpt-4o/

https://openai.com/index/hello-gpt-4o/

Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers
● Transformer Scaling

Next Token Selection

Next Token Selection

Next Token Selection – Greedy

Next Token Selection -- Sampling
Sample from the probability distribution

Get a bit more diversity in the output

Will occasionally sample from the long tail of the distribution, producing
some unlikely word combinations

Next Token Selection – Top K Sampling

1. Generate the probability vector as usual

2. Sort tokens by likelihood

3. Discard all but top k most probable words

4. Renormalize the probabilities to be valid probability distribution (e.g. sum
to 1)

5. Sample from the new distribution

Diversifies word selection
Depends on the distribution. Could be low variance, reducing diversity

Next Token Selection – Nucleus Sampling

Instead of keeping top-k, keep the top p percent of the
probability mass.

Choose from the smallest set from the vocabulary such that

Diversifies word selection with less dependence on nature of
distribution.
Depends on the distribution. Could be low variance, reducing
diversity

Next Token Selection – Beam Search

38

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search
But we can’t exhaustively search the entire vocabulary
Keep k tokens (beam width) at each step

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search

40

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Keep k tokens at each step

E.g. k = 2

Prune to k at each step

https://web.stanford.edu/~jurafsky/slpdraft/

Next Token Selection – Beam Search

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024. https://web.stanford.edu/~jurafsky/slpdraft/

Calculated with log
probabilities

and add

https://web.stanford.edu/~jurafsky/slpdraft/

Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers
● Transformer Scaling

3 Types of Transformer Models
1. Encoder – transforms text embeddings into representations that

support variety of tasks (e.g. sentiment analysis, classification)
❖ Model Example: BERT

2. Decoder – predicts the next token to continue the input text (e.g.
ChatGPT, AI assistants)
❖ Model Example: GPT4, GPT4

3. Encoder-Decoder – used in sequence-to-sequence tasks, where one
text string is converted to another (e.g. machine translation)

Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers

○ Encoder-Only
○ Decoder-Only
○ Encoder-Decoder

● Transformer Scaling

Encoder Model Example: BERT (2019)
Bidirectional Encoder Representations from Transformers
● Hyperparameters

○ 30,000 token vocabulary

○ 1024-dimensional word embeddings

○ 24x transformer layers

○ 16 heads in self-attention mechanism

○ 4096 hidden units in middle of MLP

● ~340 million parameters

● Pre-trained in a self-supervised manner,

● then can be adapted to task with one additional layer and fine-tuned

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding.” arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

https://doi.org/10.48550/arXiv.1810.04805

Encoder Pre-Training

● A small percentage of input embedding replaced with a generic <mask>
token

● Predict missing token from output embeddings
● Added linear layer and softmax to generate probabilities over vocabulary
● Trained on BooksCorpus (800M words) and English Wikipedia (2.5B

words)

X
T

Special <cls> token
used for aggregate
sequence
representation for
classification

Encoder Fine-Tuning

● Extra layer(s) appended to convert output vectors to desired
output format

● 3rd Example: Text span prediction -- predict start and end
location of answer to a question in passage of Wikipedia,
see https://rajpurkar.github.io/SQuAD-explorer/

Sentiment
Analysis

Named Entity
Recognition (NER)

<cls> token
position

<cls> = classification token

https://rajpurkar.github.io/SQuAD-explorer/

Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers

○ Encoder-Only
○ Decoder-Only
○ Encoder-Decoder

● Transformer Scaling

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
● One purpose: generate the next token in a sequence
● By constructing an autoregressive model

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer

50T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
●

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165

Decoder: Masked Self-Attention

● During training we want to maximize the log probability of the input text
under the autoregressive model

● We want to make sure the model doesn’t “cheat” during training by looking
ahead at the next token

● Hence we mask the self attention weights corresponding to current and
right context to negative infinity

52

Masked Self-Attention

53

X

X

X

Mask right context self-attention weights to zero

Decoder: Training Process – Teacher Forcing

• During training we compute loss between ground truth label input and
generated output

• We do not feed output back to input 🡺 ”Teacher Forcing”

loss(it, it) + loss(takes, takes) + …

G
ro

u
n

d
 T

ru
th

La

b
el

s
G

en
erated

Decoder: Text Generation (Generative AI)

Ignor
e

Pr
o

m
p

t

Generate
d

• Prompt with token string “<start> It takes great”
• Generate next token for the sequence by some strategy

Decoder: Text Generation (Generative AI)

Ignor
e

Pr
o

m
p

t

Generate
d

G
en

er
at

e
d

• Feed the output back into input

Decoder: Text Generation (Generative AI)

Ignor
ePr

o
m

p
t

G
en

er
at

e
d

Generate
d

• Feed the output back into input

Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers

○ Encoder-Only
○ Decoder-Only
○ Encoder-Decoder

● Transformer Scaling

Encoder-Decoder Model

● Used for machine translation, which is a
sequence-to-sequence task

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Encoder Decoder Model

● The transformer layer in the decoder of
the encoder-decoder model has an extra
stage

● (As opposed to a standalone decoder i.e.
GPT)

● Attends to the input of the encoder with
cross attention using Keys and Values
from the output of the encoder

● Shown here on original diagram from
“Attention is all you need” paper

Encoder

Decoder

Encoder Decoder Model Training

● Target translation is fed to the
decoder

● “Teacher forcing” is used, in
that, regardless of decoder
output, the correct word is
provided the decoder

Encoder Decoder Model Inference

Cross-Attention

Keys and Values come from the last stage
of the encoder

Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers
● Transformer Scaling

Context Length of LLMs in January 2024

Model Context
Length

Llama 2 32K

GPT4 32K

GPT-4 Turbo 128K

Claude 2.1 200K

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb

Attention Matrix

66

N

N

Scales quadratically with
sequence length N, e.g. N2.

Masked Attention

67

N

N

~1/2 the interactions but
still scales quadratically

Use Convolutional Structure in Attention

68

Encoder Decoder

What do these limitations
correspond to?

Dilated Convolutional Structures

69

Encoder Decoder

Encoder Decoder

Have some tokens interact globally

70

EncoderDecoder

What is the best way to scale attention?

Frankly, I haven’t seen a solid linear or linearithmic attention scheme yet.

● Many published claims of linear victories
○ Linear attention
○ Gated convolutions
○ Recurrent models
○ Structured space models
○ Selective state space models

● None at state of the art scale
○ Usually orders of magnitude smaller.
○ Anecdotally, they have quality issues?

https://llm.extractum.io/static/blog/?id=mamba-llm

https://llm.extractum.io/static/blog/?id=mamba-llm

But the big LLM shops seem to be working really hard

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/

https://blog.google/technology/ai/long-context-window-ai-models/

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note
https://blog.google/technology/ai/long-context-window-ai-models/

Feedback?

