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Midterm Comments

Re: questions,

● Mostly looked for you saying something reasonable, and that it matched your 
code and the data.

Re: learning rate schedules,

● A few of you had the learning rate dropping by 0.1 every 10-20 epochs.
● This basically stops learning within 50 epochs.
● Should be obvious something is wrong from the loss and accuracy charts.



Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers
● Transformer Scaling



What’s a Token?

A small chunk of text that we use to aid language modeling.

● Represents one or more bytes

● Input texts are greedily divided into tokens.
○ Longest prefix matching a token.

● Token set also constructed greedily.
○ Start with 256 possible bytes.

○ Then greedily pick the most common pairs of adjacent tokens.



NLP Preprocessing Pipeline

Tokenizer
Learned

Embeddings
Transformer

Preprocessing: Tokenization and 
Embedding

Transformers don’t work on character string directly, but rather on vectors.

The character strings must be converted to vectors

<Some text string>



Example Tokens



Why Tokens?

Instead of…
● Bits - not enough semantics* and missing intrabyte positioning
● Bytes - not enough semantics* for Unicode
● Characters - too many of them if we try to support all languages
● Words - even more words than characters

Remember:
● One-hot/Softmax tactic means we will have at least one output per 

possible output value, and many more parameters in practice.



 

Covers ASCII

Covers remainder of almost all Latin-script alphabets

Unicode Standard and UTF-8

https://en.wikipedia.org/wiki/Unicode 
https://en.wikipedia.org/wiki/UTF-8 

Basic Multilingual Plane including Chinese, Japanese and Korean characters

Emoji, historic scripts, math symbols

https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8


Tokenizer

Tokenizer chooses input “units”, e.g. words, sub-words, characters via 
tokenizer training

In tokenizer training, commonly occurring substrings are greedily merged 
based on their frequency, starting with character pairs

Encode Decode
character (e.g. 

Unicode) 
strings

token 
IDs

character (e.g. 
Unicode) 

strings



Tokenization Issues

“A lot of the issues that may look like issues with the neural network architecture actually trace back to 
tokenization. Here are just a few examples” – Andrej Karpathy

● Why can't LLM spell words? Tokenization.

● Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.

● Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

● Why is LLM bad at simple arithmetic? Tokenization.

● Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.

● Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.

● What is this weird warning I get about a "trailing whitespace"? Tokenization.

● Why did the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.

● Why should I prefer to use YAML over JSON with LLMs? Tokenization.

● Why is LLM not actually end-to-end language modeling? Tokenization.

● What is the real root of suffering? Tokenization.

https://github.com/karpathy/minbpe/blob/master/lecture.md 

https://github.com/karpathy/minbpe/blob/master/lecture.md


SolidGoldMagikarp???

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation

https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation


SolidGoldMagikarp???



SolidGoldMagikarp???



SolidGoldMagikarp

● Supposedly from a Redditor’s username

● But doesn’t come up much in most training data sets, so weird things 
happen if you add it to an input.

○ Supposedly fixed now by most LLM API providers…



Intuition about Tokenization

● Small chunks of text are messy to handle.
○ Picking one bit at a time is like being asked “upper case or lower case”

● Longer chunks imply more semantics
○ Easier to model?

○ But maybe a bias towards some languages?

● But too long chunks won’t have coverage in training data

● More tokens means more model outputs
○ So both computational costs and coverage issues if too many



Tokenizer
Two common tokenizers:

● Byte Pair Encoding (BPE) – Used by OpenAI GPT2, GPT4, etc.
○ The BPE algorithm is "byte-level" because it runs on UTF-8 encoded strings.
○ This algorithm was popularized for LLMs by the GPT-2 paper and the associated GPT-2 code 

release from OpenAI. Sennrich et al. 2015 is cited as the original reference for the use of BPE 
in NLP applications. Today, all modern LLMs (e.g. GPT, Llama, Mistral) use this algorithm to 
train their tokenizers.*

● sentencepiece
○ (e.g. Llama, Mistral) use sentencepiece instead. Primary difference being that sentencepiece 

runs BPE directly on Unicode code points instead of on UTF-8 encoded bytes.

* https://github.com/karpathy/minbpe/tree/master 

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://github.com/openai/gpt-2
https://github.com/openai/gpt-2
https://arxiv.org/abs/1508.07909
https://github.com/google/sentencepiece
https://github.com/karpathy/minbpe/tree/master


BPE Pseudocode

Initialize vocabulary with individual characters in the 
text and their frequencies
While desired vocabulary size not reached:
    Identify the most frequent pair of adjacent    
    tokens/characters in the vocabulary
    Merge this pair to form a new token
    Update the vocabulary with this new token
    Recalculate frequencies of all tokens including 
    the new token
Return the final vocabulary



Enforce a Token Split Pattern

● Do not allow tokens to merge across certain characters or patterns

● Common contraction endings: ‘ll, ‘ve, ‘re

● Match words with a leading space

● Match numeric sequences

● carriage returns, new lines

GPT4_SPLIT_PATTERN = r"""'(?i:[sdmt]|ll|ve|re)|[^\r\n\p{L}\p{N}]?+\p{L}+|\p{N}{1,3}| 
?[^\s\p{L}\p{N}]++[\r\n]*|\s*[\r\n]|\s+(?!\S)|\s+"""

GPT2_SPLIT_PATTERN = r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""



GPT4 Tokenizer

https://tiktokenizer.vercel.app/ 

cl100k_base is the GPT4 
tokenizer

https://tiktokenizer.vercel.app/


GPT2 Tokenizer

https://tiktokenizer.vercel.app/ 

You can see some issues with the 
GPT2 tokenizer with respect to 
python code

https://tiktokenizer.vercel.app/


GPT4 Tokenizer

https://tiktokenizer.vercel.app/ 

Issues are improved with GPT4 
tokenizer

https://tiktokenizer.vercel.app/


Byte Pair Encoding (BPE) Example



Byte Pair Encoding (BPE) Example



Byte Pair Encoding (BPE) Example



Byte Pair Encoding (BPE) Example



Byte Pair Encoding (BPE) Example



Generally # of tokens increases and 
then starts decreasing after 
continuing to merge tokens



self.embedding = nn.Embedding(vocab_size, embedding_dim)

Learned Embeddings

● After the tokenizer, you have an updated “vocabulary” indexed by token ID
● Next step is to translate the token into an embedding vector
● Translation is done via a linear layer which is typically learned with the rest 

of the transformer model

● Special layer definition, likely to exploit sparsity of input

Tokenizer
Learned

Embeddings:
Linear Layer

Transformer

<Some text string>



Embeddings Output

”One hot encoding”

N  

In this example, we are 
assuming a token is simply a 
complete word

 



Tokenization Matters

From the gpt-4o announcement,

“It matches GPT-4 Turbo performance on text in English and code, with 
significant improvement on text in non-English languages, while also being 
much faster and 50% cheaper in the API.”

Gains were from increasing the
number of tokens in the updated
tokenizer.

https://openai.com/index/hello-gpt-4o/

https://openai.com/index/hello-gpt-4o/
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Next Token Selection
 



Next Token Selection
 



Next Token Selection – Greedy 
 



Next Token Selection -- Sampling
Sample from the probability distribution

Get a bit more diversity in the output

Will occasionally sample from the long tail of the distribution, producing 
some unlikely word combinations



Next Token Selection – Top K Sampling

1. Generate the probability vector as usual

2. Sort tokens by likelihood

3. Discard all but top k most probable words

4. Renormalize the probabilities to be valid probability distribution (e.g. sum 
to 1)

5. Sample from the new distribution

Diversifies word selection
Depends on the distribution. Could be low variance, reducing diversity



Next Token Selection – Nucleus Sampling

Instead of keeping top-k, keep the top p percent of the 
probability mass.

Choose from the smallest set from the vocabulary such that

Diversifies word selection with less dependence on nature of 
distribution.
Depends on the distribution. Could be low variance, reducing 
diversity



Next Token Selection – Beam Search
 

38

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024.  https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/


Next Token Selection – Beam Search
But we can’t exhaustively search the entire vocabulary
Keep k tokens (beam width) at each step

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024.  https://web.stanford.edu/~jurafsky/slpdraft/

https://web.stanford.edu/~jurafsky/slpdraft/


Next Token Selection – Beam Search

40

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024.  https://web.stanford.edu/~jurafsky/slpdraft/

Keep k tokens at each step

E.g. k = 2

Prune to k at each step

https://web.stanford.edu/~jurafsky/slpdraft/


Next Token Selection – Beam Search

D. Jurafsky and J. H. Martin, Speech and Language Processing. 2024.  https://web.stanford.edu/~jurafsky/slpdraft/

Calculated with log 
probabilities

and add

https://web.stanford.edu/~jurafsky/slpdraft/
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3 Types of Transformer Models
1. Encoder – transforms text embeddings into representations that 

support variety of tasks (e.g. sentiment analysis, classification)
❖  Model Example: BERT

2. Decoder – predicts the next token to continue the input text (e.g. 
ChatGPT, AI assistants)
❖  Model Example: GPT4, GPT4

3. Encoder-Decoder – used in sequence-to-sequence tasks, where one 
text string is converted to another (e.g. machine translation)



Transformer Details
● Tokenization
● Next Token Selection
● Training Transformers

○ Encoder-Only
○ Decoder-Only
○ Encoder-Decoder

● Transformer Scaling



Encoder Model Example: BERT (2019)
Bidirectional Encoder Representations from Transformers
● Hyperparameters

○ 30,000 token vocabulary

○ 1024-dimensional word embeddings

○ 24x transformer layers

○ 16 heads in self-attention mechanism

○ 4096 hidden units in middle of MLP

● ~340 million parameters

● Pre-trained in a self-supervised manner, 

● then can be adapted to task with one additional layer and fine-tuned

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding.” arXiv, May 24, 2019. doi: 10.48550/arXiv.1810.04805.

https://doi.org/10.48550/arXiv.1810.04805


Encoder Pre-Training

● A small percentage of input embedding replaced with a generic <mask> 
token

● Predict missing token from output embeddings
● Added linear layer and softmax to generate probabilities over vocabulary
● Trained on BooksCorpus (800M words) and English Wikipedia (2.5B 

words)

X
T

Special <cls> token 
used for aggregate 
sequence 
representation for 
classification



Encoder Fine-Tuning

● Extra layer(s) appended to convert output vectors to desired 
output format

● 3rd Example: Text span prediction -- predict start and end 
location of answer to a question in passage of Wikipedia, 
see https://rajpurkar.github.io/SQuAD-explorer/ 

Sentiment 
Analysis

Named Entity 
Recognition (NER)

<cls> token 
position

<cls> = classification token

https://rajpurkar.github.io/SQuAD-explorer/
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Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
● One purpose: generate the next token in a sequence
● By constructing an autoregressive model

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165


Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
 

50T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165


Decoder Model Example: GPT3 (2020)
Generative Pre-trained Transformer
●  

T. B. Brown et al., “Language Models are Few-Shot Learners.” arXiv, Jul. 22, 2020. doi: 10.48550/arXiv.2005.14165.

https://doi.org/10.48550/arXiv.2005.14165


Decoder: Masked Self-Attention

● During training we want to maximize the log probability of the input text 
under the autoregressive model

● We want to make sure the model doesn’t “cheat” during training by looking 
ahead at the next token

● Hence we mask the self attention weights corresponding to current and 
right context to negative infinity

52



Masked Self-Attention

53

X

X

X

Mask right context self-attention weights to zero



Decoder: Training Process – Teacher Forcing

• During training we compute loss between ground truth label input and 
generated output

• We do not feed output back to input 🡺 ”Teacher Forcing”

loss(it, it) + loss(takes, takes) + …
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Decoder: Text Generation (Generative AI)

Ignor
e

Pr
o

m
p

t

Generate
d

• Prompt with token string “<start> It takes great”
• Generate next token for the sequence by some strategy



Decoder: Text Generation (Generative AI)
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• Feed the output back into input



Decoder: Text Generation (Generative AI)
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Encoder-Decoder Model

● Used for machine translation, which is a 
sequence-to-sequence task

https://jalammar.github.io/illustrated-transformer/ 

https://jalammar.github.io/illustrated-transformer/


Encoder Decoder Model

● The transformer layer in the decoder of 
the encoder-decoder model has an extra 
stage

● (As opposed to a standalone decoder i.e. 
GPT)

● Attends to the input of the encoder with 
cross attention using Keys and Values 
from the output of the encoder

● Shown here on original diagram from 
“Attention is all you need” paper

Encoder

Decoder



Encoder Decoder Model Training

● Target translation is fed to the 
decoder

● “Teacher forcing” is used, in 
that, regardless of decoder 
output, the correct word is 
provided the decoder



Encoder Decoder Model Inference



Cross-Attention

Keys and Values come from the last stage 
of the encoder
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Context Length of LLMs in January 2024

Model Context 
Length

Llama 2 32K

GPT4 32K

GPT-4 Turbo 128K

Claude 2.1 200K

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb 

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb


Attention Matrix

66

N

N

Scales quadratically with 
sequence length N, e.g. N2.



Masked Attention

67

N

N

~1/2 the interactions but 
still scales quadratically



Use Convolutional Structure in Attention

68

Encoder Decoder

What do these limitations 
correspond to?



Dilated Convolutional Structures

69

Encoder Decoder

Encoder Decoder



Have some tokens interact globally

70

EncoderDecoder



What is the best way to scale attention?

Frankly, I haven’t seen a solid linear or linearithmic attention scheme yet.

● Many published claims of linear victories
○ Linear attention
○ Gated convolutions
○ Recurrent models
○ Structured space models
○ Selective state space models

● None at state of the art scale
○ Usually orders of magnitude smaller.
○ Anecdotally, they have quality issues?

https://llm.extractum.io/static/blog/?id=mamba-llm

https://llm.extractum.io/static/blog/?id=mamba-llm


But the big LLM shops seem to be working really hard

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/

https://blog.google/technology/ai/long-context-window-ai-models/

https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note
https://blog.google/technology/ai/long-context-window-ai-models/


Feedback?


